Google

Saturday, November 10, 2007

Cutting Tool For Lathes

1-Tool Geometry:
For cutting tools, geometry depends mainly on the properties of the tool material and the work material. The standard terminology is shown in the following figure. For single point tools, the most important angles are the rake angles and the end and side relief angles.
The back rake angle affects the ability of the tool to shear the work material and form the chip. It can be positive or negative. Positive rake angles reduce the cutting forces resulting in smaller deflections of the workpiece, tool holder, and machine. If the back rake angle is too large, the strength of the tool is reduced as well as its capacity to conduct heat. In machining hard work materials, the back rake angle must be small, even negative for carbide and diamond tools. The higher the hardness, the smaller the back rake angle. For high-speed steels, back rake angle is normally chosen in the positive range. There are two basic requirements for thread cutting. An accurately shaped and properly mounted tool is needed because thread cutting is a form-cutting operation. The resulting thread profile is determined by the shape of the tool and its position relative to the workpiece. The second by requirement is that the tool must move longitudinally in a specific relationship to the rotation of the workpiece, because this determines the lead of the thread. This requirement is met through the use of the lead screw and the split unit, which provide positive motion of the carriage relative to the rotation of the spindle. Most lathe operations are done with relatively simple, single-point cutting tools. On right-hand and left-hand turning and facing tools, the cutting takes place on the side of the tool; therefore the side rake angle is of primary importance and deep cuts can be made. On the round-nose turning tools, cutoff tools, finishing tools, and some threading tools, cutting takes place on or near the end of the tool, and the back rake is therefore of importance. Such tools are used with relatively light depths of cut. Because tool materials are expensive, it is desirable to use as little as possible. It is essential, at the same, that the cutting tool be supported in a strong, rigid manner to minimize deflection and possible vibration. Consequently, lathe tools are supported in various types of heavy, forged steel tool holders, as shown in the figure.


The tool bit should be clamped in the tool holder with minimum overhang. Otherwise, tool chatter and a poor surface finish may result. In the use of carbide, ceramic, or coated carbides for mass production work, throwaway inserts are used; these can be purchased in great variety of shapes, geometrics (nose radius, tool angle, and groove geometry), and sizes.

2-Tool angles:
There are three important angles in the construction of a cutting tool rake angle, clearance angle and plan approach angle.


Rake Angle:
Rake angle is the angle between the top face of the tool and the normal to the work surface at the cutting edge. In general, the larger the rake angle, the smaller the cutting force on the tool, since for a given depth of cut the shear plane AB, shown in Figure 4 decreases as rake angle increases. A large rake angle will improve cutting action, but would lead to early tool failure, since the tool wedge angle is relatively weak. A compromise must therefore be made between adequate strength and good cutting action.

Clearance Angle:
Clearance angle is the angle between the flank or front face of the tool and a tangent to the work surface originating at the cutting edge. All cutting tools must have clearance to allow cutting to take place. Clearance should be kept to a minimum, as excessive clearance angle will not improve cutting efficiency and will merely weaken the tool. Typical value for front clearance angle is 6° in external turning.


Plan Profile of Tool:
The plan shape of the tool is often dictated by the shape of the work, but it also has an effect on the tool life and the cutting process. Figure 6 shows two tools, one where a square edge is desired and the other where the steps in the work end with a chamfer or angle. The diagram shows that, for the same depth of cut, the angled tool has a much greater length of cutting edge in contact with the work and thus the load per unit length of the edge is reduced. The angle at which the edge approaches the work should in theory be as large as possible, but if too large, chatter may occur. This angle, known as the Plan Approach Angle, should therefore be as large as possible without causing chatter.

The trailing edge of the tool is ground backwards to give clearance and prevent rubbing and a good general guide is to grind the trailing edge at 90° to the cutting edge. Thus the Trail Angle or Relief Angle will depend upon the approach angle.
A small nose radius on the tool improves the cutting and reduces tool wear. If a sharp point is used it gives poor finish and wears rapidly.

4 comments:

kavita said...

wow, good. u r master. really u have good post and tools. u have a master mind.
Thanks and Regards,
ApexFastener Tools

korinta said...

The blog for "Cutting Tool For Lathes" came out well.. You have given the detailed explanation with figures which will teach the people effectively..
Concrete Core Drill

Unknown said...

Indian cutting tools is the world's leading supplier of thread cutting, thread rolling, threading tools, threading taps, thread cutting tools, cutting thread and thread rolling dies.

HSS Tool Bits







Unknown said...

Broach India - Techcellence is a leading manufacturer and exporter of broach, broaching machines and optimum quality industrial spline gauges in India.

Broach Manufacturer India